Abstract

AbstractPartitioning of crustal shortening between the colliding continental plates is highly variable in nature. Physical controls of such variability remain largely enigmatic and require quantitative understanding. In this study, we employ 2‐D thermomechanical numerical modeling to investigate the influence of the rheological properties of the continental crust on the dynamics and distribution of crustal shortening during continental collision. Three major physical parameters, (i) the mechanical strength of the upper crust, (ii) the Moho temperature, and (iii) the convergence rate, are investigated, and their influences on crustal shortening partitioning between the lower and upper plates are systematically documented. Numerical modeling results suggest that a strong upper crust of the lower plate, high Moho temperature, and slow convergence rate favor migration of crustal shortening from the lower to the upper plate. Our numerical modeling results compare well with natural observations from the Alpine orogenic system where variable partitioning of crustal deformation between the plates is documented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.