Abstract

The Kangra reentrant constitutes a ~ 80-km-wide zone of fold-thrust belt made of Cenozoic strata of the foreland basin in NW Sub-Himalaya. Earlier workers estimated the total long-term shortening rate of 14 ± 2 mm/year by balanced cross-section between the Main Boundary Thrust and the Himalayan Frontal Thrust. Geologically estimated rate is nearly consistent with the GPS-derived slip rate of 14 ± 1 mm/year. There are active faults developed within 4–8 km depth of the Sub-Himalayan fold-thrust belt of the reentrant. Dating the strath surfaces of the abandoned fluvial terraces and fans above the thrust faults, the uplift (bedrock incision) rates are computed. The dips of thrust faults are measured in field and from available seismic (depth) profiles. From the acquired data, late Quaternary shortening rates on the Jawalamukhi Thrust (JT), the Soan Thrust (ST) and the Himalayan Frontal Thrust (HFT) are estimated. The shortening rates on the JT are 3.5–4.2 mm/year over a period 32–30 ka. The ST yields a shortening rate of 3.0 mm/year for 29 ka. The corresponding shortening and slip rates estimated on the HFT are 6.0 and 6.9 mm/year during a period 42 ka. On the back thrust of Janauri Anticline, the shortening and slip rates are 2.0 and 2.2 mm/year, respectively, for the same period. The results constrained the shortening to be distributed largely across a 50-km-wide zone between the JT and the HFT. The emergence of surface rupture of a great and mega earthquakes recorded on the reactivated HFT implies ≥100 km width of the rupture. The ruptures of large earthquakes, like the 1905 Kangra and 2005 Kashmir, remained restricted to the hinterland. The present study indicates that the high magnitude earthquakes can occur between the locking line and the active thrusts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call