Abstract

We prove that for every graph H, if a graph G has no H minor, then V(G) can be partitioned into three sets such that the subgraph induced on each set has no component of size larger than a function of H and the maximum degree of G. This answers a question of Esperet and Joret and improves a result of Alon, Ding, Oporowski and Vertigan and a result of Esperet and Joret. As a corollary, for every positive integer t, if a graph G has no Kt+1 minor, then V(G) can be partitioned into 3t sets such that the subgraph induced on each set has no component of size larger than a function of t. This corollary improves a result of Wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.