Abstract

In this paper, we study partitioning functions for stream processing systems that employ stateful data parallelism to improve application throughput. In particular, we develop partitioning functions that are effective under workloads where the domain of the partitioning key is large and its value distribution is skewed. We define various desirable properties for partitioning functions, ranging from balance properties such as memory, processing, and communication balance, structural properties such as compactness and fast lookup, and adaptation properties such as fast computation and minimal migration. We introduce a partitioning function structure that is compact and develop several associated heuristic construction techniques that exhibit good balance and low migration cost under skewed workloads. We provide experimental results that compare our partitioning functions to more traditional approaches such as uniform and consistent hashing, under different workload and application characteristics, and show superior performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.