Abstract
AbstractAccurately characterizing evapotranspiration is critical when predicting the response of the hydrologic cycle to climate change. Although Earth system models estimate similar magnitudes of global evapotranspiration, the magnitude of each contributing source varies considerably between models due to the lack of evapotranspiration partitioning data. Here we develop an observation‐based method to partition evapotranspiration into soil evaporation and transpiration using meteorological data and satellite soil moisture retrievals. We apply the methodology at 1,614 weather stations across the continental United States during the summers of 2015 and 2016. We evaluate the method using vegetation indices inferred from satellites, finding strong spatial correlations between modeled transpiration and solar‐induced fluorescence (r2 = 0.87), and modeled vegetation fraction and leaf area index (r2 = 0.70). Since the sensitivity of evapotranspiration to environmental factors depends on the contribution of each source component, understanding the partitioning of evapotranspiration is increasingly important with climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.