Abstract

In this paper, we propose an efficient algorithm to reduce the voltage noises for on-chip power/ground (P/G) networks of VLSI. The new method is based on the sequence of linear programming (SLP) as the optimization engine, and partitioning scheme for dealing with large-sized circuits. We show that by directly optimizing the decoupling capacitor (decap) areas as the objective function and using the time-domain adjoint method, SLP can deliver much better quality in terms of decap budget than existing methods based on the merged time-domain adjoint method. The partitioning strategy further improves the scalability of the proposed algorithm and makes it efficient for larger circuits. The resulting algorithm is general enough for any P/G network. Experimental results demonstrate the advantage of the proposed method over existing state-of-the-art methods in terms of solution quality at a mild computation cost increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.