Abstract
Iceberg queries are to compute aggregate functions over an attribute (or set of attributes) to find aggregate values above some specified threshold. It’s difficult to execute these queries because the number of unique data is greater than the number of counter buckets in memory. However, previous research has the limitation that average functions were out of consideration among aggregate functions. So, in order to compute average iceberg queries efficiently we introduce the theorem to select candidates by means of partitioning, and propose POP algorithm based on it. The characteristics of this algorithm are to partition a relation logically and to postpone partitioning to use memory efficiently until all buckets are occupied with candidates. Experiments show that proposed algorithm is affected by memory size, data order, and the distribution of data set.KeywordsExecution TimeMemory SizeMining Association RulePartitioning AlgorithmAggregate FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.