Abstract

Assume that each vertex of a graph G is assigned a nonnegative integer weight and that l and u are integers such that 0 ≤ l ≤ u. One wishes to partition G into connected components by deleting edges from G so that the total weight of each component is at least l and at most u. Such an almost uniform partition is called an (l, u)-partition. We deal with three problems to find an (l, u)-partition of a given graph: the minimum partition problem is to find an (l, u)-partition with the minimum number of components; the maximum partition problem is defined analogously; and the p-partition problem is to find an (l, u)-partition with a given number p of components. All these problems are NP-hard even for series-parallel graphs, but are solvable for paths in linear time and for trees in polynomial time. In this paper, we give polynomial-time algorithms to solve the three problems for trees, which are much simpler and faster than the known algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.