Abstract

Quantum chemical topology (QCT) solidifies the chemical basic concepts demonstrating how a molecular system is intrinsically partitioned into its components and what the interaction lines between them are. Here, QCT analysis using a Kohn-Sham one-electron potential (KSpot) in KS equation as a scalar function is initiated and explored, showing KSpot and its resultant electron force lines have novel spatial features which reveal that an atom in a molecule is a spatial basin governed by its nucleus as a 3D-attractor that terminates all the electron force lines defined by the negative gradient of KSpot and that a chemical bond line is just a minimum path of KSpot for the electron motion. Particularly, the atomic charges from this KSpot QCT analysis are moderate and good, having much lower dependence on basis sets chosen for computation. This may provide a platform for the study of molecular structures and properties, intra- and intermolecular electrostatic interaction, energy decomposition, and construction of force field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call