Abstract
Heronian mean (HM) operator has the advantages of considering the interrelationships between parameters, and linguistic intuitionistic fuzzy number (LIFN), in which the membership and non-membership are expressed by linguistic terms, can more easily describe the uncertain and the vague information existing in the real world. In this paper, we propose the partitioned Heronian mean (PHM) operator which assumes that all attributes are partitioned into several parts and members in the same part are interrelated while in different parts there are no interrelationships among members, and develop some new operational rules of LIFNs to consider the interactions between membership function and non-membership function, especially when the degree of non-membership is zero. Then we extend PHM operator to LIFNs based on new operational rules, and propose the linguistic intuitionistic fuzzy partitioned Heronian mean (LIFPHM) operator, the linguistic intuitionistic fuzzy weighted partitioned Heronian mean (LIFWPHM) operator, the linguistic intuitionistic fuzzy partitioned geometric Heronian mean (LIFPGHM) operator and linguistic intuitionistic fuzzy weighted partitioned geometric Heronian mean (LIFWPGHM) operator. Further, we develop two methods to solve multi-attribute group decision making (MAGDM) problems with the linguistic intuitionistic fuzzy information. Finally, we give some examples to verify the effectiveness of two proposed methods by comparing with the existing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.