Abstract

The connections between mathematical logic and combinatorics have a rich history. This paper focuses on one aspect of this relationship: understanding the strength, measured using the tools of computability theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most fundamental combinatorial principles, König's Lemma and Ramsey's Theorem. We denote the set of natural numbers by ω and the set of finite sequences of natural numbers by ω<ω. We also identify each n ∈ ω with its set of predecessors, so n = {0, 1, 2, …, n − 1}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.