Abstract
Hydrophobized polysaccharides such as cholesterol-bearing pullulan (CHP), dextran (CHD) and mannan (CHM) effectively coat the liposomal surface. Partition of the hydrophobized polysaccharide-coated liposomes in an aqueous two-phase system (PEO (top)/pullulan (bottom) or PEO (top)/dextran (bottom)) was investigated (PEO = poly(ethylene oxide)). Conventional liposomes without a polysaccharide coat mostly locate at the interface between the two polymer phases. The polysaccharide-coated liposomes, on the other hand, were partly partitioned to the bottom polysaccharide phase depending on the structure of the hydrophobized polysaccharide on the liposomal surface. The affinity between the polysaccharide on the liposomal surface and that in the bulk bottom phase controls the efficiency of partition. The sequence of interaction strength between the two carbohydrates as the following: for the PEO/dextran two-phase system, dextran (liposome)-dextran (bulk) > mannan (liposome)-dextran (bulk) > pullulan ( liposome) - dextran ( bulk) ; while for the PEO/pullulan system, the sequence of interaction strength was pullulan (liposome)-pullulan (bulk) > dextran (liposome)-pullulan (bulk) ≈ mannan ( liposome) - pullulan ( bulk) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.