Abstract

We construct a family of partially ordered sets (posets) that are q-analogs of the set partition lattice. They are different from the q-analogs proposed by Dowling [5]. One of the important features of these posets is that their Whitney numbers of the first and second kind are just the q-Stirling numbers of the first and second kind, respectively. One member of this family [4] can be constructed using an interpretation of Milne [9] for S[n, k] as sequences of lines in a vector space over the Galois field F q. Another member is constructed so as to mirror the partial order in the subspace lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.