Abstract

We study the design of capacitated survivable networks using directed p-cycles. A p-cycle is a cycle with at least three arcs, used for rerouting disrupted flow during edge failures. Survivability of the network is accomplished by reserving sufficient slack on directed p-cycles so that if an edge fails, its flow can be rerouted along the p-cycles. We describe a model for designing capacitated survivable networks based on directed p-cycles. We motivate this model by comparing it with other means of ensuring survivability, and present a mixed-integer programming formulation for it. We derive valid inequalities for the model based on the minimum capacity requirement between partitions of the nodes and give facet conditions for them. We discuss the separation for these inequalities and present results of computational experiments for testing their effectiveness as cutting planes when incorporated in a branch-and-cut algorithm. Our experiments show that the proposed inequalities reduce the computational effort significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.