Abstract
This paper outlines an investigation of a class of arc-transitive graphs admitting a finite symmetric group Sn acting primitively on vertices, with vertex-stabilizer isomorphic to the wreath product Sm wr Sr (preserving a partition of {1,2,…n} into r parts of equal size m). Several properties of these graphs are considered, including their correspondence with r × r matrices with constant row- and column-sums equal to m, their girth, and the local action of the vertex-stabilizer. Also, it is shown that the only instance where Sn acts transitively on 2-arcs occurs in the case m = r = 2. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 107–117, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.