Abstract
In 1944, Freeman Dyson conjectured the existence of a "crank" function for partitions that would provide a combinatorial proof of Ramanujan's congruence modulo 11. Forty years later, Andrews and Garvan successfully found such a function and proved the celebrated result that the crank simultaneously "explains" the three Ramanujan congruences modulo 5, 7, and 11. This note announces the proof of a conjecture of Ono, which essentially asserts that the elusive crank satisfies exactly the same types of general congruences as the partition function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.