Abstract

It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n ≠V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n ≠V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.