Abstract
REE concentrations of mafic mineral separates from high-silica rhyolites measured by INAA are high and variable compared to electron microprobe analyses of the minerals themselves. The mafic phases commonly contain inclusions or have adhering grains of accessory rare earth element (REE)-rich minerals. Optical and electron microscopic observation revealed discrete grains of chevkinite (rare earth titano-silicate) included within clinopyroxenes from the Sierra La Primavera (Mexico) rhyolite, and monazite grains adhering to ortho- and clinopyroxenes from the Bishop Tuff (California). During hand-picking of mineral separates, inclusions are only partly removed. As a result, the magnitude and variability of true mineral-melt partition coefficients for light REE have been overestimated. The true REE partition coefficients of La Primavera and Bishop Tuff pyroxenes obtained by microprobe are only slightly higher than they are in lower-silica rhyolites, and are not as variable as previously thought. The partitioning slope is positive, as in less silicic systems. The relative partitioning behavior of REE in high-silica rhyolites is dominated by crystal-chemical controls and not by liquid structural effects. When a partition coefficient is used for crystallization calculations, adhering phases and inclusions should be retained or the minor phases must be accounted for separately. Alternatively, a bulk distribution coefficient can be calculated using whole rock and glass compositions and the glass mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.