Abstract

Cell surface-associated changes in behaviour of cultured cells on partition in an aqueous two-phase polymer system were studied using FM3A cell line (a cultured mammary cancer of mouse) with respect to aging. The aqueous polymer system consisted of dextran, polyethyleneglycol and sodium phosphate, equilibrated at 6°C to separate into two phases. Enzyme treatment of cells with neuraminidase reduced cell electrophoretic mobility, as well as the cell partition ratio. Hyaluronidase produced no observable effects on partition and cell electrophoretic mobility, suggesting that the partition is related to sialic acid-associated cell surface charges. The pattern of change in relation to culture time was similar for both cell electrophoretic mobility and cell partition, showing a rise and fall of charge-associated cell surface change during cell growth, the maximum occurring at the beginning of exponential growth. This change was reflected in the pattern of countercurrent distribution of the cells in respective stages of growth. Countercurrent distribution with our two-phase system is expected to be capable of fractionating cell populations according to cell surface properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.