Abstract
Integrating multi-omics data helps identify disease subtypes. Many similarity-based methods were developed for disease subtyping using multi-omics data, with many of them focusing on extracting common clustering structures across multiple types of omics data, but not preserving data-type-specific clustering structures. Moreover, clustering performance of similarity-based methods is affected when similarity measures are noisy. Here we proposed PartIES, a Partition-level Integration using diffusion-Enhanced Similarities to perform disease subtyping using multi-omics data. PartIES uses diffusion to reduce noises in individual similarity/kernel matrices from individual omics data types first, and then extract partition information from diffusion-enhanced similarity matrices and integrate the partition-level similarity through a weighted average iteratively. Simulation studies showed that (1) the diffusion step enhances clustering accuracy, and (2) PartIES outperforms competing methods, particularly when omics data types provide different clustering structures. Using mRNA, long noncoding RNAs, microRNAs expression data, DNA methylation data, and somatic mutation data from The Cancer Genome Atlas project, PartIES identified subtypes in bladder urothelial carcinoma, liver hepatocellular carcinoma, and thyroid carcinoma that are most significantly associated with patient survival across all methods. Further investigations suggested that among subtype-associated genes, many of those that are highly interacting with other genes are known important cancer genes. The identified cancer subtypes also have different activity levels for some known cancer-related pathways. The R code can be accessed at https://github.com/yuqimiao/PartIES.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.