Abstract

Particulate matter (PM) sources at four different monitoring sites in Alexandra, New Zealand, were investigated on an hourly timescale. Three of the sites were located on a horizontal transect, upwind, central, and downwind of the general katabatic flow pathway. The fourth monitoring site was located at the central site, but at a height of 26 m, using a knuckleboom, when wind conditions permitted. Average hourly PM10 (PM with an aerodynamic diameter <10 μm) concentrations in Alexandra showed slightly different diurnal profiles depending on the sampling site location. Each location did, however, feature a large evening peak and smaller morning peak in PM10 concentrations. The central site in Alexandra experienced the highest PM10 concentrations as a result of PM transport along a number of katabatic flow pathways. A significant difference in PM10 concentrations between the central and elevated sites indicated that a shallow inversion layer formed below the elevated site, limiting the vertical dispersion of pollutants. Four PM10 sources were identified at each of the sites: biomass combustion, vehicles, crustal matter, and marine aerosol. Biomass combustion was identified as the most significant source of PM10, contributing up to 91% of the measured PM10. Plots of the average hourly source contributions to each site revealed that biomass combustion was responsible for both the evening and morning peaks in PM10 concentrations observed at each of the sites, suggesting that Alexandra residents were relighting their fires when they rose in the morning. The identification of PM sources on an hourly timescale can have significant implications for air quality management.Implications: Monitoring the sources of PM10 on an hourly timescale at multiple sites within an airshed provides extremely useful information for air quality management. Sources responsible for observed peaks in measured diurnal PM10 concentration profiles can be easily identified and targeted for reduction. Also, hourly PM10 sampling can provide crucial information on the role meteorology plays in the development of elevated PM10 concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call