Abstract

Epidemiological studies have shown that particulate matter 2.5 (PM2.5) not only increases the incidence of cardiopulmonary illnesses but also relates to the development of neurodegenerative diseases. Considering that PM2.5 is highly heterogeneous with regional disparity and seasonal variation, we investigated whether PM2.5 exposure induced neuronal apoptosis and synaptic injuries in a season-dependent manner. The results indicated that PM2.5 altered the expression of apoptosis-related proteins (mainly bax and bcl-2), activated caspase-3 and caused neuronal apoptosis. Additionally, PM2.5 decreased the levels of synaptic structural protein postsynaptic density (PSD-95) and synaptic functional protein N-methyl-D-aspartate (NMDA) receptor subunit (NR2B) expression. These effects occurred in a season-dependent manner, and PM2.5 collected from the winter showed the strongest changes. Furthermore, the effect was coupled with the inhibition of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated cAMP-response element binding protein (p-CREB). Based on the findings, we analyzed the correlations between the chemical composition of PM2.5 samples and the biological effects, and confirmed that winter PM2.5 played a major role in causing neuronal apoptosis and synaptic injuries among different season samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.