Abstract

IgA nephropathy (IgAN) is characterized by deposition of galactose-deficient IgA1 (Gd-IgA1) in glomerular mesangium associated with mucosal immune disorders. Since environmental pollution has been associated with the progression of chronic kidney disease in the general population, we specifically investigated the influence of exposure to fine particulate matter less than 2.5 μm in diameter (PM2.5) on IgAN progression. Patients with biopsy-proven primary IgAN were recruited from seven Chinese kidney centers. PM2.5 exposure from 1998 to 2016 was derived from satellite aerosol optical depth data and a total of 1,979 patients with IgAN, including 994 males were enrolled. The PM2.5 exposure levels for patients from different provinces varied but, in general, the PM2.5 exposure levels among patients from the north were higher than those among patients from the south. The severity of PM2.5 exposure in different regions was correlated with regional kidney failure burden. In addition, each 10 μg/m3 increase in annual average concentration of PM2.5 exposure before study entry (Hazard Ratio, 1.14; 95% confidence interval, 1.06-1.22) or time-varying PM2.5 exposure after study entry (1.10; 1.01-1.18) were associated with increased kidney failure risk after adjustment for age, gender, estimated glomerular filtration rate, urine protein, uric acid, hemoglobin, mean arterial pressure, Oxford classification, glucocorticoid and renin-angiotensin system blocker therapy. The associations were robust when the time period, risk factors of cardiovascular diseases or city size were further adjusted on the basis of the above model. Thus, our results suggest that PM2.5 is an independent risk factor for kidney failure in patients with IgAN, but these findings will require validation in more diverse populations and other geographic regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call