Abstract

The purpose of this work is to reduce the particulate matter (PM) generation from sliding parts by applying carbonaceous films. We investigate particle generation properties of wear-resistant carbonaceous films in the form of a particle size distribution chart. Using a laser scattering type particle counter, we evaluated the particle generation properties of sliding parts coated with high crystallinity, N+-implanted high-crystallinity and low-crystallinity diamond films, diamond-like carbon films deposited by ion beam enhanced deposition using static and dynamic mixing methods, Si3N4 silicon nitride, and SUS340C stainless steel. The diamond films showed significantly lower particle generation, especially for large particles, than DLC, Si3N4, and SUS340C films owing to lower wear. Particle generation from N+-implanted diamond films was greater for small particles than for the other diamond films owing to the wear of the N+-implanted layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.