Abstract

Air frying has become a popular cooking method for domestic cooking, but the level of released indoor air pollutants is poorly understood. In this work, we compared particle and gas phase emission factors (EF) and particle size distributions between cooking with a domestic air fryer and a pan for a variety of foods. The PM10 EFs of air frying chicken wings and breast were higher than pan cooking by a factor of 2.1 and 5.4, respectively. On the other hand, a higher PM10 emission factor from air frying can be achieved by increasing the amount of oil to levels similar to or above those from pan-frying for French fries and asparagus. We propose that higher temperature and greater turbulence lead to higher PM10 EFs for cooking with the air fryer compared with the pan for the same mass of oil added. EFs of volatile organic compounds (VOCs) are also generally higher for cooking with the air fryer compared with the pan: 2.5 times higher for French fries and 4.8 times higher for chicken breast. Our study highlights the potential risk of higher indoor PM10 levels associated with domestic air frying under certain cases and proposes possible mitigation measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call