Abstract

ABSTRACTThis research has been conducted in order to obtain a database of emission rate of particulate matter and gases (CO, NO, and SO2) from combustion of lignite and agricultural residues, such as rice husk. The experimental investigation was performed in a fixed-bed combustor. Thirteen stages–electrical low-pressure impactor was used to collect particles ranging in sizes from 40 nm to 10 μm. The results show that emission rate of total mass of particulate matter from combustion of rice husk is lower than that of lignite combustion but the total number of particles emitted is higher. This implies lower particle density from agricultural residue combustion. For co-firing lignite and rice husk, particulate matter emission is found to be higher than combustion of either lignite or rice husk and an increase in rice husk mass fraction in fuel mixture leads to an increase in particulate matter emission. From these quantitative data, it could be mentioned that the fuel characteristics influenced directly on particulate emission. For gaseous emission factors, CO and NOx concentration decrease as SA/TA ratio increases. Meanwhile, SO2 emission tends to increase. Both NOx and SO2 emissions are reduced as increased rice husk mass fraction in fuel mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.