Abstract
Manganese has been measured in size-fractionated paniculate matter profiles obtained by large volume in situ filtration of the upper 1000 m of the N.W. Atlantic as part of the Warm Core Rings Experiment (WCRE) in 1982. Environments sampled included Warm Core Rings (WCR) 82B and 82H, the entrainment zone at the edge of these rings, the Slope Water surrounding rings, and the Gulf Stream (GS) and Sargasso Sea (SS) from which the rings formed. Manganese concentrations ranged from 10 pmol kg −1 to 10,000 pmol kg −1 with the extreme values observed in the quasi-isolated core waters of WCR 82B and in a tongue of shelf water at the periphery of WCR 82B, respectively. The majority of the Mn was in the 1–53 μm particle size fraction and most Mn was probably close to 1 μm in size. Mn showed no correlation with major biogenic phases indicating that formation by local biological processes was not an important source. Instead, most paniculate Mn present in the waters sampled originated in reducing sediments at the continental margin. A manganese budget for the quasi-isolated core waters of WCR 82B between February and June 1982 showed that most Mn removal was by the aggregation of the small Mn-oxyhydroxide particles into fecal material, followed by sedimentation. Calculations show that WCRs cause offshore particulate Mn transports from the continental margin between 66°W and Cape Hatteras of 8.5 × 10 4 to 14 × 10 4 mol d −1 with most derived from the continental shelf. Only 4% of the shelf derived Mn becomes entrained into WCRs and the rest is left to disperse in the Slope Water or enter the circulation of the Gulf Stream. The WCR-induced offshore Mn transports may account for a large fraction of the Mn flux to sediments on the continental slope and upper continental rise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.