Abstract

The rate of particle generation in a SiH4/NH3 rf discharge has been studied as a function of the discharge operating parameter space, electrode geometry, and power supply coupling mode. Measurements of the bulk quantity of particles produced in the discharge reveal that the mode of coupling (capacitive or dc) as well as the electrode temperature significantly affects particle generation rates. Laser light scattering measurements made as a function of the plasma power density indicate that particle generation abruptly ceases at a threshold value sufficient to induce spark breakdown at the cathode. Based on these observations, it is shown that particle growth in plasmas can be modeled entirely as a heterogeneous process. The initiation of particle growth is shown to be consistent with an electron surface desorption model involving vibrational excitation of surface clusters. Propagation of growth in the gas phase is shown to be consistent with an eliminative ion-molecular condensation reaction, and the pressure dependence of this mechanism is exploited to estimate a value for the rate constants for SiH4 and NH3 condensation in SiN:H particle growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.