Abstract

One soliton of particle velocity and its amplitude (maximum particle velocity of one soliton) in Toda lattice is given analytically. It has also been known numerically that the maximum particle velocity (when the collision of two solitons reaches their maximum, we define Vn at this time as its maximum particle velocity) during the collision of two solitons moving in the same direction is equal to the difference between the amplitudes of two solitons if the difference is large enough; however, the maximum particle velocity is equal to the adding up of the amplitudes of two solitons moving in the opposite directions. The relationship between the maximum value of e-rn-1 and their initial amplitude of e-rn-1 is also given analytically in Toda lattice if the amplitudes of the two solitons are the same and their moving directions are opposite. Compared with the Boussinesq equation, there are differences between the Toda lattice equation and the Boussinesq equation for solitons during the collision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.