Abstract

We have been able to design model filled rubbers with exactly the same chemical structure but different filler arrangements. From these model systems, we show that the particle arrangement in the elastomeric matrix controls the strain softening at small strain amplitude known as the Payne effect, as well as the elastic modulus dependence on the temperature. More precisely, we observed that the Payne effect disappears and the elastic modulus only weakly depends on the temperature when the particles are well separated. On the contrary, samples with the same interfacial physical chemistry but with aggregated particles show large amplitudes of the Payne effect and their elastic modulus decreases significantly with the temperature. We discuss these effects in terms of glassy bridge formation between filler particles. The observed effects provide evidence that glassy bridges play a key role on the mechanical properties of filled rubbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.