Abstract

Although particle trajectory calculations have been used previously to analyze the behavior of membrane systems, these studies have ignored the effects of particle–particle interactions. Particle motion was evaluated by numerical integration of the Langevin equation accounting for the combined effects of electrostatic repulsion, enhanced hydrodynamic drag, Brownian diffusion, and interparticle forces. In the absence of Brownian forces, particles are unable to enter the pore unless the drag force associated with the filtration velocity can overcome the electrostatic repulsion. The presence of a second particle alters the particle trajectories, forcing the particles to attain equilibrium positions located symmetrically about the pore centerline. Interparticle forces can effectively push the particle over the energy barrier, significantly reducing the magnitude of the critical filtration velocity required for particle transmission. Brownian forces also allow particles to enter the pore, with the particle transmission increasing with increasing filtration velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.