Abstract

A particle velocimetry technique is described which enables the measurement of the fluid velocity inside impacting drops. Using high speed photography of 2 μm fluorescent tracer particles suspended in the fluid, the velocity field was measured as a function of time and radial position. The potential of the technique is illustrated using velocimetry measurements of drops of pure water and aqueous solutions of 200 ppm poly-(ethylene oxide) (PEO). Dilute solutions of PEO have been known for some time to suppress the rebound of water from hydrophobic surfaces. The dissipation has traditionally been attributed to an increased extensional viscosity as the polymers stretch in the extensional flow of the droplet. Our results enable us to infer that the extensional viscosity of PEO drops, during both the spreading and retraction phase, is similar to that of pure water. The data suggest that the true source of dissipation lies at the droplet edge. We also show, by analysing the spreading of water drops, that the Roisman-Yarin theory for a droplet spreading on a surface is valid in the bulk of the droplet prior to the final stages of spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call