Abstract

Estuarine turbidity maxima (ETM) can retain suspended particulate matter (SPM) through advection, settling, aggregation, and nonlinearities in bed processes. We define a parameter space descriptive of ETM water column particle trapping processes through a scaling analysis of the local and integral SPM balances. There are six primary non-dimensional parameters for the large particles or aggregates that are typically trapped in an ETM. Rouse numberP, the ratio of settling velocityW S to the shear velocityU *, describes the material trapped in the ETM in terms of the local vertical balance between vertical mixing and aggregate settling. Advection numberA = PDU/UT scales the landward transport of SPM in terms of flood-ebb velocity difference (ΔU; the internal asymmetry) and maximum tidal current (U T ). Supply number Sr =PU r /U t defines SPM supply and removal (U r is river flow). Changes in the estuarine inventory of SPM are described in terms of a Trapping EfficiencyE, a ratio of peak ETM concentration to fluvial or marine supply concentration. The effects of aggregation and disaggregation in the integral dynamic balance are quantified by a Floc number Θ = Φ/Г that describes the balance of aggregation (Φ) and disaggregation (Г). The balance between erosion and deposition at the bed is described by the Erosion number Π = Ψ/Ω, the ratio of erosion (Ψ) to deposition(Ω). The non-dimensional, integral SPM conservation equation is then used to examine steady and unsteady particle trapping scenarios, including adjustments to a change in river flow and to a neap-spring transition in salinity intrusion and stratification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.