Abstract

A spontaneous reduction in anomalous particle transport in the plasma core is seen experimentally in reproducible, purely neutral beam heated plasma phases at Wendelstein 7-X (W7-X). Heating and fueling the plasma exclusively with the neutral beam injection system for several seconds leads to continuously peaking plasma density profiles with strong gradients inside mid minor radius. A significant acceleration of the density peaking occurs after a certain onset time and is examined with a detailed particle transport analysis in several discharges. By invoking the particle continuity equation, the total experimental radial electron flux is deduced from the time evolution of the electron density profile and the radially resolved particle sources. Subtracting the modeled neoclassical particle flux contribution gives the anomalous particle flux. Exploiting the evolving plasma conditions, anomalous diffusion and convection coefficients are computed from the flux variation with density and density gradients. In several discharges a significant and consistent change of the anomalous transport coefficients is seen when crossing a specific normalized density gradient length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.