Abstract

The turbulent transport of main ion and trace impurities in a tokamak device in the presence of steep electron density gradients has been studied. The parameters are chosen for trapped electron mode turbulence, driven primarily by steep electron density gradients relevant to H-mode physics. Results obtained through nonlinear and quasilinear gyrokinetic simulations using the GENE code are compared with results obtained from a fluid model. Impurity transport is studied by examining the balance of convective and diffusive transport, as quantified by the density gradient corresponding to zero particle flux (impurity peaking factor). Scalings are obtained for the impurity peaking with the background electron density gradient and the impurity charge number. It is shown that the impurity peaking factor is weakly dependent on impurity charge and significantly smaller than the driving electron density gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call