Abstract

This paper presents an extension of the state of the art theoretical model utilized for understanding the stability criteria of the particles in particle swarm optimization algorithms. Conditions for order-1 and order-2 stability are derived by modeling, in the simplest case, the expected value and variance of a particle’s personal and neighborhood best positions as convergent sequences of random variables. Furthermore, the condition that the expected value and variance of a particle’s personal and neighborhood best positions are convergent sequences is shown to be a necessary condition for order-1 and order-2 stability. The theoretical analysis presented is applicable to a large class of particle swarm optimization variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.