Abstract

Determining an optimal decision model is an important but difficult combinatorial task in imbalanced microarray-based cancer classification. Though the multiclass support vector machine (MCSVM) has already made an important contribution in this field, its performance solely depends on three aspects: the penalty factor C, the type of kernel, and its parameters. To improve the performance of this classifier in microarray-based cancer analysis, this paper proposes PSO-PCA-LGP-MCSVM model that is based on particle swarm optimization (PSO), principal component analysis (PCA), and multiclass support vector machine (MCSVM). The MCSVM is based on a hybrid kernel, i.e., linear-Gaussian-polynomial (LGP) that combines the advantages of three standard kernels (linear, Gaussian, and polynomial) in a novel manner, where the linear kernel is linearly combined with the Gaussian kernel embedding the polynomial kernel. Further, this paper proves and makes sure that the LGP kernel confirms the features of a valid kernel. In order to reveal the effectiveness of our model, several experiments were conducted and the obtained results compared between our model and other three single kernel-based models, namely, PSO-PCA-L-MCSVM (utilizing a linear kernel), PSO-PCA-G-MCSVM (utilizing a Gaussian kernel), and PSO-PCA-P-MCSVM (utilizing a polynomial kernel). In comparison, two dual and two multiclass imbalanced standard microarray datasets were used. Experimental results in terms of three extended assessment metrics (F-score, G-mean, and Accuracy) reveal the superior global feature extraction, prediction, and learning abilities of this model against three single kernel-based models.

Highlights

  • Cancer is a disorder caused by excessive and uncontrolled cell division in a body

  • Considering particle swarm optimization (PSO) has a number of desirable properties, including simplicity of implementation, scalability of dimension, and a good empirical performance, and is computationally efficient compared to other optimization techniques [33], and there exist few studies on multiclass support vector machine (MCSVM) classifier with combined kernels in microarray-based cancer classification, this paper proposes a novel gene expressionbased cancer classification model, i.e., PSO-principal component analysis (PCA)-LGPMCSVM

  • A novel classification model, PSO-PCA-LGP-MCSVM, that is based on MCSVM with a hybrid kernel, i.e., linear-Gaussian-polynomial (LGP), is proposed in this paper

Read more

Summary

Introduction

Cancer is a disorder caused by excessive and uncontrolled cell division in a body. A total of 9.6 million people died of cancer in 2018 [1]. As a matter of fact, death due to cancer can be reduced to nearly half if the cancer types are detected early and the right treatment administered in time. It is still a challenge for researchers to effectively diagnose cancer on the basis of morphological structure since different cancer types exhibit thin differences [2]. This challenge encourages application of data mining techniques, especially the use of gene expression data in determining the types of cancer cells. It is well known to contain information about the disease that may be in the gene sample, which may help experts in treating or preventing the disease [3]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.