Abstract

The rotating micro-motion parts produce micro-Doppler (m-D) effects which severely influence the quality of inverse synthetic aperture radar (ISAR) imaging for complex moving targets. Recently, a method based on short-time Fourier transform (STFT) and L-statistics to remove m-D effects is proposed, which can separate the rigid body parts from interferences introduced by rotating parts. However, during the procedure of removing m-D parts, the useful data of the rigid body parts are also removed together with the m-D interferences. After summing the rest STFT samples, the result will be affected. A novel method is proposed to recover the missing values of the rigid body parts by the particle swarm optimization (PSO) algorithm. For PSO, each particle corresponds to a possible phase estimation of the missing values. The best particle is selected which has the minimal energy of the side lobes according to the best fitness value of particles. The simulation and measured data results demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call