Abstract
This paper presents a new system which automatically identifies conflicts between multiple UAVs (Unmanned Aerial Vehicles) and proposes the most effective solution considering the available computation time. The system detects conflicts using an algorithm based on axis-aligned minimum bounding box and resolves them cooperatively using a collision-free trajectory planning algorithm based on a simple one-at-a-time strategy to quickly compute a feasible but non-optimal initial solution and a stochastic optimization technique named Particle Swarm Optimization (PSO) to improve the initial solution. PSO modifies the 4D trajectories of the UAVs with an overall minimum cost. Determining optimal trajectories with short time intervals during the execution of the mission is not feasible, hence an anytime approach using PSO is applied. This approach yields trajectories whose quality improves when available computation time increases. Thus, the method could be applied in realtime depending on the available computation time. The method has been validated with simulations in scenarios with multiple UAVs in a common workspace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.