Abstract
This paper presents a swarm intelligence based parameter optimization of the support vector machine (SVM) for blind image restoration. In this work, SVM is used to solve a regression problem. Support vector regression (SVR) has been utilized to obtain a true mapping of images from the observed noisy blurred images. The parameters of SVR are optimized through particle swarm optimization (PSO) technique. The restoration error function has been utilized as the fitness function for PSO. The suggested scheme tries to adapt the SVM parameters depending on the type of blur and noise strength and the experimental results validate its effectiveness. The results show that the parameter optimization of the SVR model gives better performance than conventional SVR model as well as other competent schemes for blind image restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.