Abstract
The damage analysis of coastal structure is very much essential for better and safe design of the structure. In the past, several researchers have carried out physical model studies on non-reshaped berm breakwaters, but failed to give a simple mathematical model to predict damage level for non-reshaped berm breakwaters by considering all the boundary conditions. This is due to the complexity and non-linearity associated with design parameters and damage level determination of non-reshaped berm breakwater. Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm Optimization (PSO) with SVM (PSO–SVM) are developed to predict damage level of non-reshaped berm breakwaters. Optimal kernel parameters of PSO–SVM are determined by PSO algorithm. Both the models are trained on the data set obtained from experiments carried out in Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, India. Results of both models are compared in terms of statistical measures, such as correlation coefficient, root mean square error and scatter index. The PSO–SVM model with polynomial kernel function outperformed other SVM models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.