Abstract

Abstract The ascent phase trajectory optimization of a single stage liquid propellant hypersonic launch vehicle is considered in this paper. Trajectory optimization is done to achieve desired terminal conditions using angle of attack as a control variable. The formulation entails nonlinear 2-dimensional launch vehicle flight dynamics with mixed boundary conditions and multi-constraints. The burning time of the liquid rocket engine is fixed, leading to fixed time problem. By studying the behavior of the problem with boundary constraints, the non-linear problem is solved using the PSO method and the optimal trajectory is obtained. The effect of two types of dynamic inertia weight and constant inertia weight in PSO algorithm is examined. The influence of controlling parameters is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.