Abstract
Abstract In this work we propose the application of the particle swarm optimization (PSO) method to Optical-geometric optimization of linear Fresnel reflector solar concentrators (LFR). The optical-radiative behavior of the system is modeled based on the Ray tracing-Monte Carlo algorithm that calculates the optical performances and the radiative energy collected by the absorber tube. For this system, the application of particle swarm optimization method for optical optimization has not been studied yet. For this reason, testing this method and developing its strategy of implementation in the case of Fresnel concentrator system is one of other objective of this work. In that sense, we present mainly the coupling strategy between the Monte Carlo-ray tracing algorithm and the particle swarm optimization method. In first, the PSO optimization algorithm established is validated by comparison with a deterministic method results. Then, we demonstrated the ability of the method to resolve optimization problem with high number of decision parameters and complex objective function. Subsequently, the various guidelines allowing the rational use of this method in the case of linear Fresnel systems optimization are proposed and discussed. Subsequently, the optimization algorithm is applied to the case of linear Fresnel concentrator module designed in the framework of SIROCCO project.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.