Abstract
Most non-significant individual single nucleotide polymorphisms (SNPs) were undiscovered in hypertension association studies. Their possible SNP-SNP interactions were usually ignored and leaded to missing heritability. In present study, we proposed a particle swarm optimization (PSO) algorithm to analyze the SNP-SNP interaction associated with hypertension. Genotype dataset of eight SNPs of renin-angiotensin system genes for 130 non-hypertension and 313 hypertension subjects were included. Without SNP-SNP interaction, most individual SNPs were non-significant difference between the hypertension and non-hypertension groups. For SNP-SNP interaction, PSO can select the SNP combinations involving different SNP numbers, namely the best SNP barcodes, to show the maximum frequency difference between non-hypertension and hypertension groups. After computation, the best PSO-generated SNP barcodes were dominant in non-hypertension in terms of the occurrences of frequency differences between non-hypertension and hypertension groups. The OR values of the best SNP barcodes involving 2-8 SNPs were 0.705-0.334, suggesting that these SNP barcodes were protective against hypertension. In conclusion, this study demonstrated that non-significant SNPs may generate the joint effect in association study. Our proposed PSO algorithm is effective to identify the best protective SNP barcodes against hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.