Abstract

Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are nonlinear then Unscented Kalman filter (UKF) can be used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation, which is offline. Tuning is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R) of the filter. This paper presents tuning of UKF using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for ballistic target tracking. Simulations results show that the superiority of PSO tuned UKF over conventional UKF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.