Abstract

The results of numerical simulations of particle sticking behavior near the throat of a low-NO x axial-swirl burner in a 600-MW e bituminous coal burned boiler are presented. A comparison of simulation results with measurements using a probe with hot-film sensors shows that the numerical model offers a reasonable description. Calculated results of slagging show that slag build-up is substantial near the throat of the designed burner and that the sticking-particle ratio is as much as 33.2%. Because central and primary air streams remain unchanged, the mass flux of the inner secondary air is 3.25 kg s −1 while that of the outer secondary air is 12.16 kg s −1; however, the sticking-particle ratio can still be lowered to as little as 9.6%. By adjusting the outer secondary air blade angle to 15°, the sticking-particle ratio can be further lowered to 8.73%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.