Abstract

AbstractThe anomalous Zeeman effect made it clear that charged particles like the electron possess a magnetic dipole moment. Classically, this could be understood if the charged particle possesses an eigenrotation, that is, spin. Within Nelson's stochastic mechanics, it was shown that the model of a rotating charged ball is able to reproduce the well‐known spin expectation values. This classically motivated model of intrinsic rotation described in terms of a stochastic process is revisited here within the formalism of stochastic optimal control theory. Quantum Hamilton equations (QHE) for spinning particles are derived, which reduce to their classical counterpart in the zero quantum noise limit. These equations enable the calculation of the common spin expectation values without the use of the wave function. They also offer information on the orientation dynamics of the magnetic moment of charged particles beyond the behavior of the spin averages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call