Abstract

This paper provides the detailed study of (nano)particle's size effect on structural and luminescent properties of LaPO4:Eu3+ synthesized by four different methods: high temperature solid-state, co-precipitation, reverse micelle and colloidal. These methods delivered monoclinic monazite-phase submicron particles (> 100nm), 4 × 20nm nanorods and 5nm spheres (depending on the annealing temperature), 2 × 15nm nanorods, and ultra-small spheres (2nm), respectively. The analysis of emission intensity dependence on Eu3+ concentration showed that quenching concentration increases with a decrease of the particle size. The critical distance for energy transfer between Eu3+ ions is found to be 18.2Å, and the dipole-dipole interaction is the dominant mechanism responsible for the concentration quenching of emission. With the increase in Eu3+ concentration, the unit-cell parameter slightly increases to accommodate larger Eu3+ ions at sites of smaller La3+ ions. Photoluminescent emission spectra presented four characteristic bands in the red spectral region: at 592nm (5D0→7F1), at 612nm (5D0→7F2), at 652nm (5D0→7F3) and at 684nm (5D0→7F4), while in small colloidal nanoparticles additional emission bands from host defects appear at shorter wavelengths. Intensities of f-f electronic transitions change with particles size due to small changes in symmetry around europium sites, while emission bandwidths increase with the reduction of particle size due to increased structural disorder. Judd-Ofelt analysis showed that internal quantum yield of Eu3+ emission is strongly influenced by particle's morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.