Abstract
Doped manganites have attracted substantial interest due to their unique chemical and physics properties, which makes it possible to be used for microwave absorbing materials. In this paper we report synthesizes and characterization of La0.67Ba0.33Mn0.94Ti0.06O3 powders prepared by mechanical alloying with the assistance of a high power ultrasonic treatment. After solid state reaction, the presence of single phase was confirmed by X-ray Diffraction (XRD). Refinement results showed that samples are single phase with monoclinic structure. It was found that powder materials derived from mechanical alloying results in large variation in the particle size. A significant improvement was obtained upon subjecting the mechanically milled powder materials to an ultrasonication treatment for a relatively short period of time. As determined by particle size analyzer (PSA), the mean particle size gradually decreased from the original size of 5.02 µm to 0.36 µm. Magnetic properties were characterized by VSM, and hysteresis loops results showed that samples are soft magnetic. It was found that when the mean particle size decreases, saturation was increases and coersitivity was decreases. Microwave absorption properties were investigated in the frequency range of 8-12 GHz using vector network analyzer. An optimal reflection loss of 24.44 dB is reached at 11.4 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.