Abstract

The particle size effect on the formation of palladium hydride and on surface hydrogen adsorption was studied at room temperature using in situ X-ray absorption spectroscopy at the Pd K and L3 edges. Hydride formation was indirectly observed by lattice expansion in Pd K edge XANES spectra and by EXAFS analysis. Hydride formation was directly detected in the L3 edge spectra. A characteristic spectral feature caused by the formation of a Pd−H antibonding state showed strong particle size dependence. The L3 edge spectra were reproduced using full multiple scattering analysis and density of state calculations, and the contributions of bulk absorbed and surface hydrogen to the XANES spectra could be distinguished. The ratio of hydrogen on the surface versus that in the bulk increased with decreasing particle size, and smaller particles dissolved less hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.